Neuroprotective effects of near-infrared light in an in vivo model of mitochondrial optic neuropathy.

نویسندگان

  • Julio C Rojas
  • Jung Lee
  • Joseph M John
  • F Gonzalez-Lima
چکیده

Near-infrared light (NIL) promotes a wide range of biological effects including enhancement of energy production, gene expression and prevention of cell death. This is the first report of the in vivo neuroprotective effects of NIL against optic neuropathy induced by mitochondrial complex I inhibition. Subjects were pigmented rats that received single bilateral intravitreal doses of rotenone, a mitochondrial complex I inhibitor, or rotenone plus one of three different doses of NIL. Treatment effects were evaluated at behavioral, structural and neurochemical levels. Rotenone induced a decrease in visual function, as determined by changes in the dark-adapted illuminance sensitivity threshold, escape latency and rate of successful trials in a two-choice visual task, compared with vehicle-treated controls. Behavioral impairment correlated with a decrease in retinal and visual pathway metabolic activity, retinal nerve fiber layer thickness and ganglion cell layer cell density. These changes were prevented by NIL treatments in a dose-dependent manner. Whole-brain cytochrome oxidase and superoxide dismutase activities were also increased in NIL-treated subjects in a dose-dependent manner, suggesting an in vivo transcranial effect of NIL. In whole-brain membrane isolates, NIL prevented the rotenone-induced decrease in cell respiration. The results show that NIL treatment can effectively prevent the neurotoxic effects of rotenone and that it might be used in the treatment of neurodegenerative disorders associated with mitochondrial dysfunction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy.

Photobiomodulation by light in the red to near infrared range (630-1000 nm) using low energy lasers or light-emitting diode (LED) arrays has been shown to accelerate wound healing, improve recovery from ischemic injury in the heart and attenuate degeneration in the injured optic nerve. Recent evidence indicates that the therapeutic effects of red to near infrared light result, in part, from int...

متن کامل

Histopathological and behavioral evaluations of the effects of crocin, safranal and insulin on diabetic peripheral neuropathy in rats

Objectives: Crocin and safranal, the major constituents of saffron, exert neuroprotective effects. In the present study, we investigated the effects of crocin and safranal  (alone or in combination with insulin) on peripheral neuropathy in diabetic rats. Materials and Methods: Diabetes was induced by intraperitoneal (i.p.) injection of 60 mg/kg of streptozotocin (STZ) and confirmed by blood glu...

متن کامل

Carbon Nanotubes as Near Infrared Radiation (NIR) Molecules for Cancer treatment

Introduction: The photo-thermal therapy by nanoparticles has been recently known as an efficient strategy for the cancer treatment. Carbon nanotubes (CNTs) have been extensively studied in biomedical application due to the easy uptake and high permeability in the cells, biocompatibility in biological environments and also their unique electrical, thermal properties. They genera...

متن کامل

Transcranial near-infrared phtobiomodulation causes anti-depressive and anti- anxiety effects in mice model of depression

Introduction: Depression is a common psychiatric disorder and about one in five people experience depression during their lifespan. Despite the anti-depressive effects of drug therapy, problems such as non-targeting and dose-resistant lead to more effective approaches. Transcranial Photobiomodulation (TPBM) or transcranial low-level laser (TLLL) therapy is a novel and neuropro...

متن کامل

Quantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model

Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 50  شماره 

صفحات  -

تاریخ انتشار 2008